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Abstract

We consider the problem of estimating a random process defined
along a one—dimensional track using measurements from a sensor
which traverses this track. The effects of sensor motion and
motion blur on the estimation problem are considered, and in
the particular case of a linear model for the random process
and deterministic sensor motion, these effects are analyzed and
discussed in detail. In this special case we also consider
the problem of controlling the motion of the sensor in order
to optimize some measure of the accuracy of our estimates
along the track.

~~ R ~~~~~~ Ci ’ .. ‘ C: ‘~ ‘~‘fl ~!C i : ~~:~ (i’~FSC)OF ‘Th” .f: ‘~~L 13
; t 

~~~~~~~~~~~~~~~~ ~~~~ r~ vi~ w~ d aud i~:(~~ e~~ ; c . ~’ ~‘~~
‘ i ’ c  r~~~~~~~~ e IA’! ,U”~i 1110—12 (7b) .

li~n i t ed .
~~. ~,. 

j- .’ . _~
i~~~~iii~~ tj  I.~ ~~ : ti ~~ O f f i c e r

* Department of Electrical Engineering , University of Singapore ,
Kent Ridge, Singapore 5, Singapore.

** Department of Electrical Engineering and Coinputer.Science ,
Massachusetts Institute of Technology , Cambridge, Mass. 02139

This work was performed in part at the MIT Laboratory for Information
and Decision Systems with partial support from NSF under Grant
GK—41647 and from AFOSR under Grant 77-3281. The work of A .S. Willsky
was in part performed at the Department of Computing and Control,
Imperial College of Science and Technology , London , England, under a
Senior Visiting Fellowship from the Science Research Council of Great
Britain .

Approved fo r  pu~~ ic release ;
-.~i~ tr~~~ t .~on un1iuit~ d.

7q U;3 ~~~- .  
- _~~. ~~~~~~~



—2—

I. Introduction 
~ 

f i
In this paper we consider the problem of recursive estimation of

a random process defined along a one—dimensional track traversed by

a moving sensor. Problems of this type arise in a variety of applica-

tions. For example , small variations in the gravitational field of

the earth are often measured and mapped using data obtained from ships

which travel along prescribed trajectories [1,2]. Another important

context in which this kind of problem arises is in the remote sensing

of atmospheric variables using instruments carried in a satellite

(3—6], and a final related application is the processing of blurred

images obtained from moving cameras (7].

In our work we have restricted attention to a special class of

problems. Specifically , we focus on sensor motion along a one—

dimensional track , on which the process to be estimated can be

modeled as the output of a finite—dimensional shaping filter. While

our general formulation allows for a nonlinear shaping filter , most

of our attention will focus on the linear case.

These restrictions deserve some cossnent. Problems involving

one—dimensional tracks occur in many applications. Data collected

by a satellite along its trajectory is an obvious example, and gravity

data from ships is also often collected along straight-line paths.

These observations have led researchers (1-7] to use one—dimensional

formulations for the various problems that they have considered. On

p ~
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the other hand , by restricting attention to one—dimensional tracks ,

we can expect to gain only some insights into the issues involved

in mapping spatially-distributed random processes . The multidimen-

sional problem clearly raises many questions which we have not

considered and which must be in the future. Nevertheless , we feel

that our study is a valuable step in gaining some understanding into

problems of this type . In particular , the ideas and results that

we have developed concerning the effect of sensor motion on the

estimation problem are of some importance and , in fact , represent

the major focus of our work .

The assumption that the random process to be estimated can be

modeled as the output of a linear shaping filter is clearly an

idealization. However, it is one that has found great use in prac-

tice (1—7] . For example , linear—gaussian models for the deviation

of a gravitational field from some idealized reference have been

developed using both physically-based models and statistical parameter

identification techniques, and these models have proven to be of

great value in practice (1,2]. The further assumption that the shaping

filter model is finite dimensional is also an approximation. For

example, physically—based models for the power spectral density of

random gravity fluctuations are not rational (1,2], and, furthermore,

except in certain special cases, the power spectral density along

a track across a random field will not be rational even if the



spectrum for the entire field Is rational. Nevertheless, the as-

sumption of finite—dimensionality is one that has met with success In

applications, and we have chosen to use this assumption for this

reason as well as for the reason of obtaining detailed solutions. The

effects of sensor motion on these solutions are particularly clear, and

this has facilitated our gaining an understanding of some cf the issues

that arise in processing data from moving sensors. Thus we feel that

our study can be of value both in practice where approximations matching

our assumptions can be made and in aiding our understanding into these

types of problems. The removal of these assumptions remains for the

future, but our work should provide a useful starting point.

A final point concerning the formulation and perspective adopted

in this paper relates to the focus on recursive techniques. One of the

largest problems to be faced in the analysis of spatially—distributed

random data is that of efficient handling of the large amounts of data

involved. Since model—based recursive estimation techniques have proven

to be extremely efficient for processing time series data, it is natural

to ask whether analogs of such techniques exist for spatial data. Our

work is an initial look at adapting one—dimensional recursive techniques

to spatial data processing. Clearly much work remains, especially in

considering the substantial increase in problem complexity that will be

encountered in more than one spatial dimension.

Thus the main goal of our work has been to gain some understanding

into problems of mapping spatially—distributed random fields by

L _________________________
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considering the one-dimensional problem using the tools of recursive

estimation theory. The major emphasis of this paper is on an exa-

mination of the effect of sensor motion on the estimation problem.

In the next section we formulate the basic problem and indicate how

sensor speed affects the measurements, while the specialization to

the linear case is the topic addressed in Section III. The results

of Section III are used in Section IV to formulate an optimal control

problem for controlling sensor motion to achieve the best map possible.

This formulation is very much in the spirit of the work in [8] on

optimal search strategies. In Section V we extend the results of

Section III to include the possibility of motion blur in the obser-

vations. Most of the detailed analysis through Section V is for the

case of deterministic sensor motion. In Section VI we discuss the ef-

fects of random sensor motion, and the paper concludes with a discussion

in Section VII of some of the issues we have raised and open problems

that need to be examined.

II. Problem Formulation

Let s denote distance along the one-dimensional track, and let the

(possibly vector—valued) spatial random process to be estimated be

denoted by c(s). Our basic assumption is that ~ can be modeled as the

output of a spatial shaping filter, that is, a stochastic differential

equation in 5
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dx (s) = f(x(s),s)ds + g ( x ( s ) , s)dw (s) , s>0 (2. 1)

~ (s)  h ( x ( s ) , s) (2 . 2 )

where x(O) is a given random variable, independent of the Brownian

motion process w which has covariance

min (s,a)

E(w(s)w ’ (a)] = Q (~ )d~ (2.3)

Note that if ~(s) has a rational power spectral density , we can always

find a linear, space-invariant model of this type.

The spatial process is observed through a sensor that moves in

the direction of increasing s with velocity V(t). The velocity may be

deterministic or random but is assumed to be positive for all t with

probability 1. The equation of motion of the sensor then is

ds(t) = v(t)dt , s(0)—O ( 2 . 4 )

The value of the process ~ being observed at time t then is ~(s(t)),

~J1
and the measurements are modeled by*

dz1
(t) — r(~ (s(t)),t)dt + d81

(t) (2. 5)

where B1 is a Brownian motion process with

*
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E (~ 1
(t)~~j ( s) ]  = I min(t,s) (2 .6 )

We assume that C~ 1
(T
1
) - ~1

(T
2
), T

1 
> > t} is independent of

{s (T ) , V (T ) , w ( s ( T ) ) ,  0 < T  < t }  and x( 0)  and hence of [~~(T) , 0 < T  < t}.

Since v(t) is positive, s(t) is monotonically increasing and we can

define t(s) as the inverse of s(t). We will assume that w(s1
) —

> s
2 

> s, is independent of 1s(T)As, ‘~t2 o} U {v t s ’~~~, 0 < s ’ <

Since ~ is a memoryless function of x , we can combine equations

(2.2) and (2.5) to obtain

dz
1
(t) c(~~(t), s(t),t)dt + d~ 1

(t) (2 .7)

where

= x( s ( t ) ) (2 .8 )

c(~~(t),s(t),t) r[h(~ (t),s(t)),t3 
(2 .9 )

Our problem then is to estimate the spatial shaping filter state x ( s ) ,

which satisfies (2.1), (2.3) , given the measurements z1 
specified by

(2.6), (2.7), (2.8) and the sensor motion equation (2.4).

In order to solve this estimation problem, it is necessary to

describe the evolution of i~(t). Note that if x(s) were differentiable ,

we could write

* A simpler but more restrictive condition would be that B1 is independent
of v,w, and x(0) and that w is independent of v. The less restrictive
condition given in the text is included since it allows for the possibility
that the sensor velocity v might be chosen to depend upon past observations.
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~~ ~(t) = v(t) d~c(s) (2.10)
dt ds

s=s (t)

However, in our case, we must utilize results on change of time

scale for diffusion processes [9,10]. We present in Appendix 1 a

statement of the required result without proof since this is a

straightforward generalization of McKean’s result [9]. ~n application

of the result which requires v ( t ) >  0 , Vt , w.p. 1 , gives us

d~c(t )  = f(~~(t),t)v(t)dt + g (~~(t) ,t )v 1”2 (t )d~~(t) (2 . 11)

where n is a Brownian notion process with

Etdri(t)
2
] = Q(t )d t  = Q ( s ( t ) ) d t  (2 .12)

and

f(.,t) = f ( . ,s ( t ) )  (2.13)

= g ( . ,s(t ) ) (2.14)

The estimation of ~~(t) is now a standard nonlinear filtering

problem [11], which thus has all of the difficulties associated with

that type of problem. A discussion of the general nonlinear case is

given in (10]. For the remainder of this paper we will concentrate on

the linear case.



~~~~~~
- -‘T~~~:~~’:T : 

_ _ _ _ _ _ _ _ _ _

III. Estimation of Linear Spatial Processes with
Deterministic Sensor Motion

Suppose that we have a linear process model

dx(s) = A ( s) x ( s ) d s  + 2 ( s ) d w ( s )  (3.1)

and linear observations

dz1
(t) C(s(t),t)~~(t) + d~1

(t) (3.2)

In this case the evolution of ~(t) is given by

di~(t) = A(s ( t ) ) V ( t ) ~~(t )d t + B (s ( t ) ) v 1”2 (t )d ~~(t )  (3 .3)

Assuming that v(t) is deterministic and that x(O) is Gaussian with

mean x(O) and variance P(0), the conditional mean ~(t) of ~(t) given

r < t can be computed using the Kalinan filter

d~~(t) = A(s ( t ) ) v ( t ) ~~(t )dt  + p ( t ) C ’( s ( t ) ,t) (dz
1

(t)  — C(s(t),t)~~(t)dt]

(3 .4)

The covariance p(t) of the estimation error (~~(t)-.~~(t) ) can be computed

o~f-line from the Riccati equation

P ( t )  = v(t )  (A ( s ( t ) ) P ( t )  + P (t ) A ’  ( s ( t ) ) ]  + v ( t ) B ( s ( t ) ) Q ( s ( t ) ) B ’  ( s(t ) )

— P ( t ) C ’  (s (t) ,t ) C( s (t) ,t ) P ( t) (3.5)

Note that because of the assumption of deterministic sensor

motion, the estimates ~(t) can be directly transformed into estimates

of the field x(s). That is , ~(t(s)) is the optimal estimate of x(s)

-. •
~~~~~~~~.
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given data up to the point s, or , equivalently , time t(s). The

covariance of this estimate is obviously

~M ( s )  = P ( t ( s ) )  (3 .6)

and, differentiating (3 .6 )  we obtain

= A ( s ) M ( s )  + M ( s ) A ’  (s) + B(s)Q (s)B’ (s)

- 
M(s)C’ (s,t ( s ) ) C ( s ,t(s))M(s)

v ( t ( s ) )

Examining (3.5) and (3 .7)  we can see how the speed of the sensor

affects the performance of the estimator. The first two terms on the

right-hand sides of (3.5) and ( 3 . 7 )  are the covariance propagation dy-

namics without measurements. Intuitively the matrix A ( s )  controls the

“correlation distance ” in the process x (s), while A(s (t))v (t) determines

the correlation time for ~ (t) . For example in the scalar, space-invariant

(A=constant) case, V~A I 
is the correlation distance for x(s) arid

1/ ~AIv is the correlation time for ~(t). Thus we have the physically

correct feature that the faster we move, the faster the fluctuations we

see in the observed process. Also, we would intuitively expect that

the quality of the measurements would also decrease as the sensor veloc-

ity is increased. This feature can be deduced from (3.7), where we see

that the term that tends to decrease M(s) to account for the obser—

vations is inversely proportional to V .



—11—

IV. Optimal Mapping via Sensor Motion Control

As we have seen , the motion of the sensor affects the quality of

the observations being taken and hence the accuracy of the estimates.

An interesting problem then is the control of sensor speed in order

to optimize some measure of the quality of the spatial map that the

observations produce. In this section we look at this problem and

formulate an optimal control problem that captures the important

features to be considered . We consider only the linear model - deter-

ministic motion problem examined in the preceding section, and , for

simplicity, we consider only the scalar case. Extension to the vector

case is immediate using the matrix version of the minimum principle

(141 .

Suppose we define our measure of the quality of the spatial map

on the interval (0 ,s
0

] by

[
so

J q(s)M(s)ds (4.1)
0

where q( s)  is a positive weighting function which we specify a priori.

We also include a cost on sensor speed to reflect penalties for large

velocities, and we assume that we have a fixed time interval [O ,T] in

which we must traverse the spatial interval [O ,s
0
). Then, transforming

(4.1) to a time integral, we obtain the following optimal control

problem. Given the dynamics

- ~~~~~~~~~~~~~~~~~~ -
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dP(t) 
= 2A ( s ( t ) ) v ( t ) P ( t )  + v(t)B2(s (t))Q(s(t)) - c

2 ( t )P 2 (t )  (4.2)

.is (t) v(t )  (4 .3)

with given initial conditions

0( 0)  P0 , s( 0 )= O  (4 .4)

deternthte the sensor velocity time history that minimizes

= 

f

T

[q($ (
~~

) )
~~

( t ) p ( t )  + r ( t ) v 2 ( t ) ]dt  (4 . 5 )

subject to

s(T) s
0 

(4.6)

~ Vt (4.7)

Here, r(t) is a specified positive time function, and ~ is an

arbitrary but fixed positive number , included to insure the pos—

itivity of the velocity.

This optimal control problem can be solved by a direct application

of the minimum principle [12 ,13] . We will consider this application

with the inclusion of one more terminal condition :

P ( T )  = (4 .8)

~~~~~~~~~~~~~
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i.e., a type of “target” terminal estimation error. This terminal

condition helps to simpl ify the two-point boundary value problem

that must be solved to determine the optimal control . The free

terminal condition problem can , of course , also be considered , but

for our demonstration purposes we need only consider the simpler problem.

The Hamiltonian for our problem can now be written as

H = 0
0

[q ( s ( t ) ) P ( t )v ( t )  + r ( t ) v 2 (t) ]

+ D1(t) [2A(~~( t ) ) v ( t ) p ( t )  + v ( t ) B 2 (s ( t ) ) Q ( s ( t ) ) (4 .9 )

— p (t) c ( t ) ]

- 
+ D2 (t )v (t )  + 1.1(t) [c—v (t ) ]

where

> 0 , ~—v (t) = 0

(4.10 )
= 0, c—v(t) < 0

(See (13].) The variables D
0
, D

1
(t), D2

(t) and )1(t) are costate

variables. The optimal control problem can now be solved in

principle by applying the minimum principle 112] to obtain the

necessary conditions that characterize the optimal velocity v*(t)

and the optimal estimation error covariartce p*(t). These are

given in Appendix 2. It is evidently impossible to obtain any

algebraic simplification on the set of necessary conditions which ,

in practice , usually have to be solved numerically on a computer.

k ~~~~~~~~~~ - ~
- ..

- -- -. —-—- - — ------ ~~~~~~~~~~~~~
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There are, however, special cases in which an explicit solution

can be obtained, and we now present one such example. Assume the fol-

lowing constant conditions;

A = 0  , B2
Q=l

r = 1/2, C2 = 1/2 (4.11)

q=l

In this case the process x (s )  is a Wiener process , not a particularly

realistic model , but it does allow us to obtain an explicit form for

the solution . Note that the choice of q(s)=l means that we give equal

weight to the accuracy of all parts of our spatial map. Now, assume

that the terminal conditions on P and s are so given that they can

be met with more than one velocity profile V ( t ) , 0 < t < T. Then, in

the case in which V ( t ) >  ~ Vt , we can derive the following expression

for P* (t) :

(dP *)
2 

= D;( O) P *2 
+ ~~~~ + ~ P ’~

4 
+ C (4.12)

where

~ =(~~
F- )2 — (D (o )p *2 (0) + p*3 (o) + ~~ . p*4 ( 0 ) )  (4.13)

t=0

- -

~

-- ~~~~~~
—-

~~~~~~ 
- - - - ii
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The derivation is presented in Appendix 3. By writing equation (4.12)

as

dP * 2 2
= h (p * ~~

) (p* —
~~~

) (p* —y ) (p* —cS ) , (4.14)

2 1
ii

the solution is given by [15]

p*(t) = (~ Y
2 

— Act)/ (Y —A) +

where

Y = sn~hNt, k} 
(4.16)

A = ( B — 6 ) / ( c t —~5) (4. 17)

= (8—y) (a—ô)/(c~—y) 
(~—~S) (4.18)

M
2 

= (B—6) (ct—y)/4 (4.19)

The function sn { , } is an elliptic function known as the sinus

amplitudirius function (15] and it is tabulated in [16]. We have now

obtained a closed form solution for P* (t) , and this enables us to

obtain the optimal velocity v*(t )  from the Riccati equation , which

is given in this case by

dP*(t) 
= v*(t) — ~~

. P*2 (t) (4 .20)

- -
~~~~~~~~~~~ 

•

~~~~~~

- - .
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V. The Inclusion of Motion Blur

We now suppose that because of its own dynamics , the sensor

is not capable of making instantaneous, point measurements . Rather ,

the sensor output at time t involves a blurring of that part of the

spatial process already swept

dz
1
(t) = [ I H (t_r)~~(T)dT]dt + d81

(t) (5.1)

where we have assumed , for simplicity , a time invariant blur model.

Models of this type were considered in the discrete time case in 17].

Suppose that the matrix blurring function H is realizable as

the impulse response of a finite dimensional linear system.

H ( t—T ) = ce~~
t_ T)

~ ( 5 .2 )

Then we can write

dz
1
(t) = Cy(t)dt + dB

1
(t) (5.3)

dy(t) = Fy (t)dt + G~ (t)dt (5.4)

We now have an estimation problem with an augmented state, con-

sisting of ~ and y, and the optimal filtering equations are

~~~~~~~~~~~~~ Ii~~ T:~~r i:T i~~~,~~~.
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~(t) 1 A ( s ( t ) ) V ( t )  ol F ~(t)]] = 

G F] [~ tJ 
(5.5)

+ P(t)(0,C’1~ dz1
(t) — Cy (t)dt }

where P(t), the error covariance for the augmented state estimation

error can be computed from

[A(s(t))v(t) 0 1 [A’ ( s ( t ) ) v ( t )  G’

~(t) = I 1 P (t) + P (t )  I
F’

1 1 1( 5 .6 )

I v ( t ) B ( s ( t ) ) Q ( s ( t ) ) B ’ (s ( t ) )  0 1  ~ ~ I
+ — P (t ) I I P ( t )

a oj  [a c’cj

VI. The Effect  of Imperfectly Known Sensor Motion

The analysis in the last few sections has been aided by the as-

sumption that the trajectory of the sensor was known or perfectly

controllable . In this section we indicate some of the complications

that arise if this is not the case . We assume that the spatial

process is modeled as in (3.3) , which is repeated here for convenience :

d~~(t) = A(S(t))v(t)~~(t)dt + B(s (t ) )v 1’~
2 ( t ) d f l ( t )  (6.1)

and we assume that the motion of the sensor can be described by

ds(t) = v(t ) d t  ( 6 . 2 )

dv(t) = u ( t) d t  + k(V(t),t)d~ (t) 
(6.3)
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Here u(t) represents the known part of the sensor ’s acceleration ,

while the other term models the unknown random perturbations in the

velocity. Here ~ is a standard Brownian motion process. Note that

for our formulation, possible choices of k are restricted to those

for which v(t)> 0 Vt with probability 1. For example , the bilinear

model

k(v) = -nv (6.4)

with the assumption u > 0, v(0)> 0 satisfies the positivity condition.

In general, we must have k dependent upon v to satisfy the constraint,

and this rules out a linear model. Of course if u is large compared with

the disturbance, we may be able to use the linear model in practice.

Given the model (6.i.)—(6.3), we assume that we observe

= c(t)~~(t)dt + dB1
(t) (6.5)

dz
2
(t) = v(t)dt + d~2

(t) (6.6)

dz
3
(t) = s(t)dt + d$

3
(t) (6.7)

where 
~2

’ and 83 
are independent Wiener process both independent of

81. Our goal is to obtain a spatial map of the process x(s) given the

observations = {z
1
(T), z

2
(r), z

3
(T) , T <t ) unfortunately, two

types of problems occur. First of all, the optimal estimation of 5~, s ,

and v is a nonlinear filtering problem, and this is the case even if

A, B, and Q do not depend on s and we assume a linear model in ( 6 . 3 ) .

IL - — — -
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The problem is the product terms in (6.1), since v is now random.

Note also that all of the observations contain information about all.

of the states. For example, the observation z1 does yield infor-

mation concerning the velocity ~, (and hence the position 5 ) .  In fact ,

it is precisely this information that is used in map—matching navi-

gation systems (1,203 in which position and velocity are deduced by

correlating an a priori map of the process x(s ) with the observed

process z
1
(t).

The second problem centers around the issue of mapping itself.

Recall that

i~(t) = E[x(s (t))jz
t] (6.8)

When 5(t) was known perfectly, we could associate this estimate with

a specific spatial point. That is,

t(s) ~x(s) = E(x(s) Z ] x (t ( s ) )  (6.9)

However, when s itself is unknown a.nd must be estimated , we do not

have such a simple relationship, and, in fact, we can not exactly

associate ~(t) with the estimate of x(s) at any specific point.

To overcome this difficulty, one might consider estimating

x(~~(t)) where 3(t) is measurable with respect to z
t 

(and hence is

known when we know the measurements). Such an approach leads to some

extremely complex technical problems. For example , one might consider

trying to estimate x( (t)), where

I
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( t )  = E [ s ( t )~~Zt ] (6.10)

However , we cannot obtain a differential equation for x(s(t)) as we

did for x (s ( t ) ) .  The problem is that in the latter case we changed

the time scale of a diffusion process with an increasing process s(t).

In the case of x(*(t)) we want to change the time scale of a diffusion

process using another diffusion process (which, of course , need not

even be increasing). We refer the reader to (10 ,17] for further dis-

cussion of these technical problems and several other approaches.

In the remainder of this section we describe one suboptitnal

estimation scheme that arises naturally from our formulation and from

the analysis of the preceding sections. This scheme decouples the

sensor location and field estimation problems. Suppose we compute the

estimates of v(t) and s(t) using only the observations z
2 
and z

3
. If

we make the assumption that (6.3) is linear (k(v(t),t) g), these esti-

mates are calculated by a Ka lman filter

[d s (t ) 1 [~~] [dz
3
t - s(t )dt l

I I = 1 I dt + K(t) (6.11)

~d v(t ) ]  [u ( t ) ]  j d z 2 
( t)  - V (t)dtj

where , assuming that 
~2 

and 83 are unit strength and independent,

K(t) satisfies the Riccati equation

[ 0 1  [~ 0 
~

0 o l
K ( t )  — K(t) + K(t) + l— K

2 (t) (6.12)
0 [1 0 [0 g~~J

— ----- - -  - --——- -~ S - - -~~~-- -- ----
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Having the estimates s(t )  and v(t ) , we now devise an estimate for

~(t) assuming that these values of s(t) and v(t) are, in fact, the true

values. That is, we implement the Kalman filter of Section III with v

and s replaced by V and s. This yields the f i l ter  equations

di(t) = A (s(t))V(t)~~(t)dt + P(t)C’ (s(t) ,t) (dz1
(t) - C(s(t) ,t)~~(t)dt]

(6.13)

~~(t) = v (t) (A ( ( t ) ) ~~(t )  + ~~(t )A ’ ( ( t ) ) ]  + v (t)B(;(t))Q(s(t))B’ ( (t))

- P(t)C’(s(t) ,t)C(s(t),t)P(t) (6.14)

Note that the Riccati equation (6.14) must be solved on-line, as the

quality of the measurements —— as dictated by sensor speed -— is

estimated on—line. We also associate the estimate ~(t) with the point

s(t) on our spatial map. In theory, there is no guarantee that s(t) is

monotonical].y increasing but in practice it is very likely to be so

because position estimates can often be made very accurately. An

evaluation of the performance of this estimator and the development

of alternative schemes including those that attempt to extract velocity

and position information from the observations z1 
remain for the

future.

VII. Conclusions

In this paper we have formulated arid studied the problem of es-

timating a one—dimensional time invariant spatial random process

given observations from a moving point sensor. Our formulation has

- I-
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allowed us to study the effects of sensor motion on the quality of

the observations and on the estimation problem i tself .  This has led

us to consider the problem of optimally controlling the velocity of

the sensor and to study the effects of uncertainties in our knowledge

of sensor location and speed. In addition, we have shown how our

formulation can be extended to allow for the effects of sensor

blurring.

As mentioned in the introduction , our purpose here has been to

expose some of the key issues involved and to provide a foundation

for further, more advanced studies. Several extensions and related

problems directly come out of the questions we have studied. An

obvious area for further work is in the study of the nature and

structure of the optimal velocity control problem discussed in Section

IV. In addition , one might also wish to consider the problem in which

the control variable is sensor acceleration. In this case v is a state

variable, and, because of (4.7), we have a state—constrained optimal

control problem. Also, in the nonlinear case or the uncertain motion

problem of Section VI, the optimal velocity or acceleration problem be-

comes one of on—line stochastic control. The structure of such

controllers should be investigated , as should the performance of the

estimator suggested in Section VI either by analysis or by simulations.

Another variation that brings us closer to a realistic formulation

for many problems, is to replace the filtered covariance P(t) in

the mapping criterion (4.2) with the smoothed covariance, i.e., we
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utilize the entire measurement history z
1
(T) , TE (O ,T] to obtain an ac-

curate spatial map over the region [0,s
0
]. In this case we lose the —

causal structure (the smoothed error covariance depends upon the

entire velocity history), and the study of the nature of optimal

sensor trajectories in this case is an interesting problem. Also we

can consider extending our analysis by allowing the sensor to reverse

direction. The deterministic analysis of Section III can clearly be

extended in this case, although the optimal estimator immediately

becomes a smoother once the sensor goes into reverse. In the case of

random sensor motion , even the time of the reversal of direction is

unknown, and hence we do not even know when to start smoothing. The

study of this is open. Intuitively, if we use a criterion based on •

smoothed error covariances, one would expect that any performance

achievable by a trajectory with reverse motion can also be achieved

by a monotone trajectory. The study of problems such as these remains

open.

In the introduction we mentioned that the sensor motion control

problem is similar in spirit to the results in [8] on optimal search

problems. In the formulations in (8] one is interested in determining

strategies for searching a region for some object, given a specification

of the probability of the detection of the object in a subset of the

region as a function of the amount of energy put into searching that

subset. In our formulation the velocity—estimation error covariance

— ~-~,-—-—---‘------ —.-
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relationship plays the role of the search energy-probability of

detection specification. Given this observation an interesting problem

is the following : suppose we modify the description of x(s) as in (3.1)

by allowing for one or more jumps in the value of x ( s)  at unknown lo-

cations; determine the optimal search procedure -- i .e.  velocity profile

-- to locate these jumps. Here again one might imagine on-line pro-

cedures , where we may choose to reverse direction to look at a given

region more carefully once we’ve satisfied ourselves that no jumps are

present outside that region. In this case some of the techniques for

the detection of failures and other abrupt changes may be of value [19].

As mentioned in Section VI, the problem of estimation when sensor

motion is uncertain represents a difficult challenge. Not only should

the suboptixnal estimator discussed be studied, but there is certainly a

need for the development of other estimation systems. Of particular

importance is the problem of estimating s(t) and v(t) given the sensor

measurements z
1
(t). As we discussed earlier, this is a problem of

potentially great practical significance for map—matching navigation

systems. Another important possibility is to allow the spatial process

to directly affect sensor motion [10 ,18]. This might arise, for example

if the spatial process were a force field (such as a gravitational field)

and our only observations were of the motion of the “sensor” (i.e., only

z
2 
and z

3 
of Section VI). In this case it is the field x(s) which is

observed only indirectly through its influence on v Ct) and s Ct) . 

~~~-~~~~--—~~~-~- —-~ — ~~~ - —.~~~~ .-~~~~~ -- - -- — - -~----.- - ~~~~~~~~~~~~~~~~~~~~~
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Finally, there are the extensions of these ideas to processes

that vary in several spatial dimensions and possibly ir~ time.

Problems such as estimation given data along one or more tracks each

of which can contain changes of direction , curves, crossings , etc.,

are of importance in applications such as gravity mapping and

meteorological analysis. In these as in many multidimensional pro-

blems two of the central. difficulties are the lack of an efficient

procedure for assimilating all of the data and the absence of a method

for devising efficient strategies for deciding what data should be

gathered. The results in this paper are aimed at the simplest of

problems of these types and thus merely form an initial step . In order

for the more general cases to be considered , a substantial effort is

needed in obtaining useful multidimensional probabilistic models and

formulations.
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APPENDIX 1

Random Change of Time for a Brownian -iotion

Theorem: Let (~2,F,P) be a probability space , ~F ,  s > o} an

increasing family of sub—a-algebras of F, and let w ( s ) be a Brownian

motion with respect to F with covariance given by (2.3). Let

v(t ) , t > 0 be a positive ranc~ m process , and let s(t) be given by (2.4).

Let t(s) denote the inverse of s (t). Furthermore , assume that the

increments w(s
1
)—w(s

2
) s~ > 

~2 
> s, are independent of

{s(T)As, T > 3} arid ~v(t(s’)), 0 < s ’ < s}. Define the increasing

family of a-algebras

G = F V a{s ( T ) J ~s , T > o}
S S 

(A.l)

a < ~~~
‘ < s}

Then for each t, s(t) is a stopping time with respect to G , arid

on the family {G }
~~>0 , where

G (t )  (A. 2)

the process

~ (t) = w(s(t)) (A.3)

is a martingale with respect to time t and is given by

d~~(t)  = V1”2(t)dfl(t) (A.4)

-~ - - - ---~~~~
- — 

— 
—~~- ---- — --- --
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where G
~~
} is a Wiener process with respect to time t with

E{dfl
2
(t)} = Q(t)dt Q(s(t))dt.

For a proof , see [9,10).

I ~~~~~~~~ - • - -~~--~~~~~~~~~~~ . ~~~~~~~~~~
- -

~~~~~~~~~ 
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APPENDIX 2

Necessary Conditions for Optimality in the Sensor Control

Problem

In order that v*( t )  be optimal , it is necessary that the

following conditions be satisfied (~ denotes optimal):

ta) dP*(t) 2
= 2A(s*(t))v*(t)P*(t) + v*(t)B (s*(t))Q(s*(t))

dt 
2 

(A.5)
— p* (t)C2(t)

ds*(t)
dt 

= v*(t) (A.6)

D~ > 0  (A.7)

dD~ (t) 
— -

dt 
—

= — D~q(s*(t))v*(t) — 2D~ (t)A(s*(t))v*(t)

2 
(A. 8)

+ 2P*(t)C (t)D~ (t)

~ ~~~~~~ ‘
~~~~
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dD~ (t) 
—

dt 
— - 

~~ *

= - D*P* ( t )v *(t )  (s *( t ))a as

— 2D*(t)v*(t)P*(t) (s*(t)) (A.9)
1 as

— 2D~ (t)V* (t)B(S*(t)) ~~ — (s *( t )) Q ( s * ( - ) )
— D~ (t)v* (t)B

2
(s*(t)) -~~~~~ (s *( t ) )

p *(O)  = ~y , p *(T) = 
~T 

(A.lO )

s*(0) = 0 , s* (T) = (A.l l)

(b) Minimization of H with respect to V :

= 0 = D~q(s *( t ) ) P * ( t )  + 2D~r(t)v*(t)

+ 2D~ (t)A(s*(t))P*(t)

(A. l2 )
+ D~~( t )B 2 (s * ( t ) ) Q ( s *(t))

+ D (t) —

Since

a2
—4 = 2r(t) D~ > 0 (A. l3)

~~~~

- 

~~~~~~~~~~ ~~~~~~~~ -h - .
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we conclude that v~ obtained from equation (A.12) must necessarily

minimize H. Equation (A. l2 )  gives us only one solution for v~

so this must necessarily be a global minimum.



APPENDIX 3

Derivation of Equation (4.12)

For the special case given by equation (4.11), the necessary

conditions become:

(a) dP*(t) 
= v*(t) - ~ p*2 ( j )  (A . l4)

ds*(t) v*(t) (A.15 )

> 0 (A. 16 )

= — D~ V*(t)  + P*(t) D~~(t) (A.l7)

2 
= o (A.18)

dt

(b) Minimization of H with respect to V:

~~~~ 
= 

~~~

= D
0
p (:) + D)v (t) + D1

(t) (A.19)

+D
2
(t) -~ .j (t)

Since we assume that the terminal conditions on P arid s are

so given that they can be met with more than one velocity

profile v(t ) , 0 < t < T, we can set

= 1 (A.20)

-

~~~~~~~~~~ I. -
~~~

- 
~~~~~~ -
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In the case when v(t) > ~~~, we set

*
ii Ct) = 0 (A.2 1)

• Equation (A.19) then gives

v (t) = — p (t) — D1(t) — D
2
(t) (A.22)

Differentiate this and substitute from (A.14) , (A.17) and (A.18)

to obtain

dv (t) I p*2(~) - p*(t)D*(t) (A.23)

Using D
1
(t) from (A.22) and noting that

D2
(t) = D;(0) 

(A.24)

we find that

*
dv (t) 3 2 * *
dt 

= 1~ (t) + P*(t)( (t) + D2
(0)) (A.25)

*
Next use v (t) from (A.14) to obtain

dv (t) 
— P*(t) (~~~,~

t) 
+ 0

2 (0)) + 
f 

P~~~(t) + ~~. P~~~(t) (A. 26)

Finally , differentiate (A.14) and substitute from (A.26) to get

—~~~~ - - - 

—



— 
._ i~~~~~-~~~~F

—3 3—

2 *d P ( t )  * * 3 *2 1 * 3
2 = D., (0)P Ct) + — P (t) + ~~

- P Ct )  (A . 2 7 )
dt 2

*This is a differential equation in P Ct). Multiplying the left
dP*side by 2 ~~~~~

— dt and the right side by 2dP* gives

(* )

2 

dt = 2(D;(o)P* + 
3 P *2 

+ P*3)d* (A.28)

An integration gives equation (4.12).

I

1~-- ~-~~---- -s--—- ~~~ - 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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